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1 Introduction and summary

Supersymmetry (SUSY) is one of the most exciting candidates for physics beyond the Stan-

dard Model. However, finding realistic models of SUSY breaking turns out to be an excep-

tionally difficult problem. In particular, SUSY must be broken in a hidden sector, so a cru-

cial ingredient is how SUSY breaking is mediated to the supersymmetric Standard Model
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(SSM). The two most studied frameworks are gravity mediation and gauge mediation. In

either scenario, the models tend to have problems which present difficulties for phenomenol-

ogy. This motivates the study of new models and frameworks for mediating SUSY breaking.

Models in which SUSY breaking is communicated to the SSM via gauge interactions

have the advantage of avoiding large flavor-violating effects, which are difficult to suppress

in other models. The first such gauge-mediated models were presented in [1–7], and re-

cently a very general description of the framework of gauge mediation appeared in [8]. The

two types of gauge mediation which have seen the most attention are Direct Mediation and

Minimal Gauge Mediation. In Direct Mediation models [9–11], the SSM gauge group is

embedded in a weakly gauged flavor symmetry of the hidden sector. In Minimal Gauge

Mediation models [12–14], there is a messenger sector which communicates with the SSM

through gauge interactions, and couples to the hidden sector via a tree-level superpotential.

Semi-Direct Gauge Mediation is a synthesis of these two frameworks. In this scenario,

the Standard Model gauge group is embedded in a (weakly gauged) flavor symmetry of the

messenger sector, but the messengers only communicate with the hidden sector via gauge

interactions. This setup was proposed in the recent work [15]. A similar idea was studied

in [16]. In [15], the primary features of Semi-Direct Gauge Mediation were illustrated using

as the hidden sector the “3-2 model” of dynamical SUSY breaking [17]. This model has a

SU(3) × SU(2) gauge group, and [15] added SU(2) doublet messenger fields. It was found

that SUSY breaking in the hidden sector induced SUSY-split messenger masses, which

could be calculated using three complementary methods.

In this work, we extend the program of Semi-Direct Gauge Mediation by taking the

hidden sector to be another calculable model of dynamical SUSY breaking, namely the “4-1

model” first presented in [14, 18]. This model has a SU(4) × U(1) gauge group and four

matter fields. The matter fields are all charged under the U(1), and under the SU(4) they

are a singlet, fundamental, anti-fundamental and antisymmetric two-index tensor. The

superpotential includes a tree level term as well as a dynamically generated contribution.

The dynamics and supersymmetry breaking in this model have been studied by several

authors,1 but for completeness we rederive in this paper many of the relevant properties.

See in particular section 2.

In section 3 we couple pairs of U(1)-charged messenger fields L and L̄ to the 4-1

model. There are no superpotential couplings between the messengers and the hidden

sector; they interact only through the gauge interactions. At tree level, the messengers feel

SUSY breaking via “diagonal” mass terms m2
dLL†. We calculate m2

d explicitly, using three

complimentary methods:

• microscopic analysis using the fundamental fields and Wess-Zumino gauge (sec-

tion 3.1).

• macroscopic analysis in terms of composite gauge invariant operators (section 3.2).

• low-energy effective theory in unitary gauge (section 3.3).

1See [14, 18–20] and references therein. Also, the 4-1 model was recently discussed in the context of

General Gauge Mediation in [21].
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The first method is the most straightforward calculation. The two other methods serve

not only as checks but also illuminate interesting aspects of the result.

One example of this is that the mass m2
d turns out to be independent of the U(1) gauge

coupling g1. This is a surprising result from the point of view of the microscopic calculation.

After all, the messengers interact with the hidden sector only through gauge interactions!

However, in the gauge-invariant description, the Higgsed gauge fields have been integrated

out and the result is an effective non-linear sigma model which is independent of g1. In

this picture, the mass splittings m2
d arise from the curvature on moduli space and therefore

cannot depend on g1.

The complimentary approaches also clarify the relationship between F-terms and D-

terms. One of the most surprising effects is that the SUSY-breaking F-terms induce tree-

level D-terms, from which the diagonal masses m2
d arise. The precise connection between

the D-terms and the F-terms follows from the calculation in unitary gauge. In this calcu-

lation, the gauge fields are integrated out by solving their equation of motion to leading

order. One finds that the superfield equation of motion implies a relationship between the

D-term of the vectors and the F-terms F of the chiral fields, D ∼ |F|2/|φ|2. The SUSY-split

diagonal masses m2
d are proportional to this term. This is a generic feature of Semi-Direct

models, and is true even when the hidden sector gauge group has no Abelian factors. This

stands in contrast to MGM models, in which such masses show up via FI terms.

Classically, SUSY breaking only generates diagonal masses for the messengers. When

the one-loop correction to the Kähler potential is included (section 3.4), off-diagonal terms

m2
odLL̄ are generated and corrections to the diagonal masses now make the supertrace over

the messenger sector non-vanishing. We show that Str m2
msg < 0.

Because the 4-1 model gauge group includes a U(1) factor, we are free to add a Fayet-

Iliopoulos term ξ. The effects of this are studied in section 4. The off-diagonal masses

turn out to be bounded as functions of ξ, and it may therefore be possible to keep the

off-diagonal terms small, while making Strm2
msg large (and negative). This may be useful

for achieving m2
f̃

> 0 for SSM sfermions f̃ .

In section 5 we take a step back to study the consistency of the model. In particular

we clarify the regime in parameter space in which our calculations are valid. As in the

Semi-Direct 3-2 model [15], we have to include an explicit superpotential mass term for the

messengers. The corresponding mass parameter m must be large enough to ensure that the

messenger fields do not get non-vanishing vevs, but in order to be relevant in the effective

low-energy theory, m should not be larger than the masses of the Higgsed vector fields. We

determine the precise conditions for this in section 5 and derive the needed constraints on

the parameters, including ξ.

Having an explicit mass term for the messengers is somewhat undesirable. In section 5.3

we modify the Semi-Direct model to become a simple model of Minimal Gauge Mediation

with a meta-stable vacuum. In this model, m = 0 and the only scale is the dynamically

generated scale of the 4-1 model.

We conclude the paper in section 6 with brief preliminary comments on the phe-

nomenology of the 4-1 Semi-Direct model. Semi-Direct models fit within the framework

of General Gauge Mediation [8], but specific models can have phenomenology which is not

– 3 –
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captured by the unified description. In our work, one new feature is the explicit dependence

on the FI parameter.

Two appendices collect technical material: in appendix A, we determine the D-flat

directions of the 4-1 model, and in appendix B we write down the generators of SU(4)

which are needed for the unitary gauge calculations.

2 4-1 model

The 4-1 model has gauge group SU(4) × U(1) and matter content

SU(4) U(1) U(1)R
S 1 4 6

Fi 4 −3 0

F̄ i 4̄ −1 −4

Aij 6 2 0

(2.1)

In the last column, we have made a convenient assignment of charges for the global non-

anomalous U(1)R symmetry.

Let us first consider the D-flat moduli space. The general solution to the SU(4) D-

flatness conditions is

A =
a√
2

(
i σ2 0

0 i σ2

)
, F = F̄ T =




b

0

0

0


 , S = c eiφc , (2.2)

where a, b, c are real positive numbers. The derivation of (2.2) is outlined in appendix A.

A further restriction is imposed by the U(1) D-flatness condition,

2a2 − 4b2 + 4c2 = 0. (2.3)

The moduli space can be parametrized by two independent gauge-invariant operators,

B ≡ SF̄ iFi and Y ≡ 1
4 F̄ iFiPfA. (Equivalently, we could write Y = F̄ iFjAikAlmǫjklm.) At

a generic point on moduli space, there is an unbroken SU(2) gauge group.

We add to this model the tree-level superpotential

Wtree = hSF̄ iFi = hB. (2.4)

The F-terms force b = 0. Hence a = c = 0 by (2.3), and the superpotential thus removes

both classical flat directions.

The unbroken SU(2) undergoes gaugino condensation, which generates a superpotential

W̃dyn = 2Λ3
2. In the original SU(4) theory, the dynamically generated superpotential is

Wdyn = 2
(
Λ10

4 /Y
)1/2

. One can motivate that W̃dyn ∼ Wdyn via symmetries, since it is

the only possible consistent term. To see how Wdyn is produced from the SU(2) answer

(ignoring numerical factors), we can go to a point on moduli space where b ≫ a [14]. There,

SU(4) is broken to SU(3) with a massless 3 + 3̄. Matching dynamical scales at the scale b

– 4 –
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gives Λ10
4 = b2Λ8

3. Next, at the scale a, SU(3) is broken to SU(2) with singlets, so Λ8
3 = a2Λ6

2.

Thus Λ10
4 = a2b2Λ6

2 = 〈Y 〉Λ6
2. This reproduces the dynamically generated superpotential(

Λ10
4 /Y

)1/2
from gaugino condensation in the SU(2) theory. Henceforth we set Λ ≡ Λ4.

Including the dynamically generated term Wdyn the full superpotential for the SU(4)

theory is then

W = hB + 2

(
Λ10

Y

)1/2

. (2.5)

As we will see in more detail below, the superpotential (2.5) breaks supersymmetry.

Before minimizing the scalar potential, it is useful to remove the dynamical scale Λ

and work in terms of dimensionless quantities. This is conveniently done by rescaling all

fields φ → Λh−1/5φ and gives

V =

(
VF +

1

ǫ1
VD1 +

1

ǫ4
VD4

)
h6/5 Λ4 , (2.6)

with

VF = |∂W |2 , VD1 =
1

8
D2

U(1) , VD4 =
1

8
(Da

SU(4))
2 and ǫ1,4 =

h2

g2
1,4

. (2.7)

Explicit expressions for the D-terms are given in appendix A.2.

We assume that h ≪ g1 ≪ g4 ≪ 1. The hierarchy between the gauge couplings is

automatic because the U(1) is IR free. In this limit, the vevs are large and the theory is

calculable. Since ǫ ≪ 1 we can minimize the potential to leading order in ǫ by minimizing

VF on the D-flat directions. Imposing (2.2) gives

VF = h6/5Λ4

(
2

∣∣∣∣bc eiφc − 1

ab2

∣∣∣∣
2

+ b4 +
4

a4b2

)
. (2.8)

This is minimized for φc = 0. Extremizing with respect to the remaining fields, we find

that the minimum is located at

(a, b, c) = (1.492, 1.102, 0.318) , Vmin = 2.22h6/5Λ4 . (2.9)

We now perturb around the minimum (2.9) to find the O(ǫ)-correction. This correction

makes the D-terms nonzero. We use φ(0) to denote the solution (2.2) with the values (2.9).

Writing φ = φ(0) + ǫ φ(1), we find

V (φ) = VF (φ(0)) + ǫ

(
∂φA

VF

∣∣∣
φ=φ(0)

φ
(1)
A +

1

2
∂φA

∂φB
VD

∣∣∣
φ=φ(0)

φ
(1)
A φ

(1)
B

)
+ O(ǫ2) . (2.10)

We work in terms of real variables, so φ is a 30-component vector and A,B = 1, . . . , 30.

To determine φ(1) such that the O(ǫ)-term is minimized, we must solve the linear system

∂φA
VF

∣∣∣
φ=φ(0)

+ ∂φA
∂φB

VD

∣∣∣
φ=φ(0)

φ
(1)
B = 0 . (2.11)

The first term in this equation, ∂VF , is only non-vanishing in the directions where φ(0)

is nonzero. The second term involves a rank 13 matrix. One can straightforwardly solve

– 5 –
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this equation for 13 fields in terms of the remaining 17; our final answers do not depend

on the undetermined fields.

The O(ǫ) correction makes the D-terms nonzero, D ∼ ǫ φ(0)φ(1). Specifically, we find

〈DU(1)〉 = 1.396
h8/5Λ2

g2
1

. (2.12)

The D-terms for SU(4) are also nonzero, but we will not record those here. The corrected

minimum of V is

Vmin = (2.22 − 0.244 ǫ1 − 0.487 ǫ4)h6/5Λ4 . (2.13)

In addition to the U(1)R, the classical theory with superpotential (2.5) has a global

U(1) symmetry, which — unlike the U(1)R — is anomalous in the quantum theory. The

U(1)R is broken in the vacuum while the global U(1) is preserved. We have explicitly

verified that the bosonic mass matrix has 15SU(4) + 1U(1) + 1U(1)R
+ 1U(1)global

− (3SU(2) +

1U(1)global
) = 14 zero modes. Of these Goldstone bosons, 13 are eaten by the Higgsed

vectors, leaving 15 − 13 = 2 remaining complex degrees of freedom. These matter degrees

of freedom are singlets under the unbroken SU(2).

Let us summarize the dynamics as follows [19]. In the UV, we start with the 4-1 model.

At the scale Λh−1/5, the matter fields get vevs and break the gauge group from SU(4)×U(1)

to SU(2). The Higgsed vectors acquire masses of order g2Λ2h−2/5. The unbroken SU(2)

confines at the scale Λ2 = Λh2/15 and the result is a low-energy sigma-model in which

gaugino condensation produces the non-perturbative term in the superpotential. Finally,

at the scale Esusy ∼
√

F ∼ Λh3/10, supersymmetry is broken. The hierarchy among these

scales is guaranteed by h ≪ 1.

3 The semi-direct 4-1 model

We now add to the 4-1 model Nf pairs of messenger fields charged under the U(1). We

will denote the messenger fields by Lα and L̄α, where α = 1, . . . , Nf . The messengers

have charges q and −q, respectively. We introduce (by hand) a mass term, so that the full

superpotential is

W = hB + 2

(
Λ10

Y

)1/2

+ mLαL̄α. (3.1)

The mass term preserves a global SU(Nf ) symmetry which acts only on the messenger

fields. The mass m has to be large enough to ensure that the messengers do not acquire

non-zero vevs. This requires

ǫ1 m2
V . m2 ≪ m2

V . (3.2)

where m2
V ∼ g2h−2/5Λ2 is the mass squared of the Higgsed vector bosons. The smallness

of ǫ1,4 = h2/g2
1,4 is guaranteed by the assumption h ≪ g1 ≪ g4 ≪ 1. The upper bound

on m is needed in order to keep the messengers in the low-energy theory obtained from

integrating out the vectors. We derive the requirement (3.2) in section 5.

The messenger fields are coupled to the hidden sector only through gauge interactions,

i.e. only through the U(1) D-terms. When SUSY is broken in the 4-1 model, the messenger

– 6 –
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masses are split and this is how SUSY breaking is communicated to the SSM. The purpose

of this section is to calculate the messenger mass splittings. Following [15] we do this in

three different ways.

3.1 Microscopic calculation

The messenger masses get contributions from the nonzero U(1) D-terms (2.12) calculated

in the previous section. There are naively two possible types of mass terms: m2
dLL† and

m2
odLL̄. We refer to these as “diagonal” and “off-diagonal” masses, respectively. Classi-

cally, only the diagonal masses are generated. They come from the U(1) D-term via the

cross-term

g2
1 V

U(1)
D =

g2
1

8

(
∑

i

qi|φi|2
)2

=
g2
1

4
〈DU(1)〉 q (|Lα|2 − |L̄α|2) + . . . (3.3)

Using (2.12) we find

m2
d = 0.349 q Λ2 h8/5 , (3.4)

so that messengers Lα and L̄α have diagonal masses m2 ± m2
d. Consistency requires that

the messengers do not become tachyonic. This is ensured by h being sufficiently small; the

precise condition is given in section 5.

It is worth noting that m2
d is independent of the gauge coupling. That this must be so

will be clear from the calculation in terms of gauge-invariant operators, which comes next.

3.2 Macroscopic analysis with gauge-invariant operators

We first re-analyze the pure 4-1 model in the language of gauge-invariant operators, and

then add the messenger fields.

3.2.1 The 4-1 model

In the pure 4-1 model, the independent SU(4)-invariants are S, F̄ iFi, and PfA. These

have U(1)-charges 4, −4, and 4, respectively. Consequently, the only gauge invariants are

B = SF̄ iFi and Y = 1
4 F̄ iFi PfA, and these parameterize the moduli space which we denote

by M0. The point Y = 0 is singular because the unbroken gauge group is larger and there

are additional massless degrees of freedom. We are only interested here in points away from

Y = 0, so henceforth we assume Y 6= 0. We can then form the real dimensionless operator

T = |Y |−3/2 B†B, (3.5)

and by dimensional analysis, the classical Kähler potential must be of the form

KM0 = |Y |1/2K0(T ) . (3.6)

The function K0(T ) is determined as follows. We can go to a point on moduli space

where the SU(4) and U(1) D-flatness conditions let us write B = b2c and Y = a2b2, with

c2 = b2 − a2/2. We can then set

a2 = Y 1/2f(T ) , b2 =
Y 1/2

f(T )
. (3.7)

– 7 –
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Note that 0 < a2 ≤ 2b2 requires 0 < f(T ) ≤
√

2.

Comparing (3.7) with T = (b4c2)/(a3b3), we see that f satisfies

Tf3 +
1

2
f2 − 1 = 0 . (3.8)

The real solution of (3.8) is

f(T ) =
1

6T
(−1 + h−(T )1/3 + h+(T )1/3), (3.9)

with h±(T ) = −1 + 6T
[
18T ±

√
324T 2 − 6

]
. This solution satisfies the necessary bound

on f(T ).

As explained at the end of section 2, the low-energy theory is described by a non-

linear sigma model with no remaining gauge degrees of freedom. In Wess-Zumino gauge,

the matter kinetic terms are simply the canonical terms, so the Kähler potential is2

|F |2 + |F̄ |2 +
1

2
|A|2 + |S|2 = 3b2 +

1

2
a2 = |Y |1/2

[
3

f(T )
+

f(T )

2

]
, (3.10)

where |F |2 ≡ FiF
†i

and |A|2 ≡ TrA†A.

Comparing (3.6) and (3.10), we can read off

K0(T ) =
3

f(T )
+

f(T )

2
. (3.11)

The scalar potential is

V0 = gAB̄
0 ∂AW ∂B̄W , (3.12)

where gAB̄
0 is the inverse of the Kähler metric g0AB̄ = ∂A ∂B̄ KM0 . Evaluating V0 at

the values of a and b given in (2.9) we find V0,min = 2.22h6/5Λ4, in agreement with the

microscopic calculation.

3.2.2 U(1)-charged messenger fields

Let us now add to the 4-1 model Nf pairs of SU(4)-singlet messenger fields Lα and L̄α

with U(1) charges ±q. We will make the convenient choice q = 4. The gauge-invariant

operators are then

Y =
1

4
F̄ iFi PfA , Xa = La F̄ iFi , Zα = L̄α PfA , R α

a = LaL̄
α . (3.13)

Here α = 1, . . . , Nf and a = 1, . . . , Nf + 1. We have introduced the notation La = La for

a = 1, . . . , Nf and La=Nf +1 = S. These fields are related by the classical constraint

XaZ
α − 4Y R α

a = 0 . (3.14)

Assuming as above that Y 6= 0, we can solve the constraint (3.14) and eliminate R α
a .

Thus our independent gauge-invariant operators are Y , Xa and Zα. These parameterize

the moduli space M of the model with messengers.

2The factor 1/2 for the antisymmetric field comes from the normalization of the Kähler term,

−
1
2
(A†)ij(eV ) kl

ij Akl. It ensures canonical normalization of the independent components of A.

– 8 –
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The moduli space M0 discussed in the previous section is the subspace of M corre-

sponding to setting Zα = Xα = 0 for α = 1, . . . , Nf . To obtain the messenger masses, we

can expand around M0 and find the Kähler metric on M in the neighborhood of M0. For

the purpose of making contact with the results in the previous section, it is convenient to

identify XNf +1 = B and work with the dimensionless variable T defined in (3.5). Near

M0, the Kähler potential takes the general form

KM= |Y |1/2K0(T )+|Y |−1
[
K1(T )X†αXα+K2(T )ZαZ†

α+K3(T )(ZαXα+(ZαXα)†)
]
. (3.15)

There are corrections to this starting at quartic order in X and Z. K0 is given in (3.11).

To leading order, Xα = b2Lα and Zα = 4a2L̄α. From the canonical kinetic terms

|L|2 + |L̄|2 we can read off the functions K1,2,3, which are

K1(T ) = f(T )2 , K2(T ) =
1

16f(T )2
, K3(T ) = 0 . (3.16)

It is convenient to rescale the fields to separate out the Y -dependence. Thus we define

X̂α = Y −1/2Xα , Ẑα = Y −1/2Zα , B̂ = Y −3/4B . (3.17)

In these variables, T = B̂†B̂ and the Kähler potential takes the simple form

KM = |Y |1/2K0(T ) + K1(T )X̂†αX̂α + K2(T )ẐαẐ†
α + . . . (3.18)

where “. . . ” represents higher order corrections.

Let us now consider the superpotential (3.1) with the mass term mL̄αLα =

ZαXα/(4Y ). After the rescalings (3.17), the full superpotential is

W = hY 3/4 B̂ + 2Λ5 Y −1/2 +
m

4
Ẑα X̂α . (3.19)

Finally we can calculate the scalar potential V expanded to quadratic order in the

messengers Xα and Zα. The mass terms can be read off from the potential, but one must

take into account the non-canonical kinetic terms arising from the Kähler potential. Cross-

terms do not arise because K3 = 0. We find that SUSY breaking produces only diagonal

mass terms for the messengers. Specifically, m2
X = m2 + m2

d and m2
Z = m2 − m2

d, where

m2
d = −4f(T )

[
f(T )2 − 6

]2[
2Tf(T )Λ5 +

√
T Y 5/4h

]2

Y 2 Tf ′(T )
[
6 + 36Tf(T ) + f(T )2

]2 . (3.20)

Evaluating (3.20) on the solution (2.9), we find m2
d = 1.396h8/5Λ2. This agrees with

the result (3.4) of the microscopic calculation when q = 4.

In this calculation of m2
d, the gauge fields were integrated out, ignoring3 their kinetic

terms 1
2g2 WαW α. Therefore the result cannot depend on the gauge couplings; this explains

why g2
1 had to drop out of the microscopic calculation of m2

d. Note that m2
d arises from

the curvature on moduli space, while in the microscopic calculation it comes from the

non-vanishing of the D-terms in Wess-Zumino gauge.

3This is equivalent to taking ǫ → 0 in the microscopic calculation.
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3.3 Unitary gauge

In our third calculation of the messenger masses we find the effective Kähler potential that

comes from integrating out the massive vectors in unitary gauge. (For an early reference on

effective Kähler potentials in unitary gauge, see [22].) We denote the U(1) vector superfield

by U and that of SU(4) by V = VaT
a. The Kähler terms in the pure 4-1 model are

S†eqSUS+(F †)ieqF U (eVaT a

) j
i Fj+(F̄ †)ie

qF̄ U (eVaT a

)ijF̄
j−1

2
(A†)ijeqAU (e

VaT a

) kl
ij Akl. (3.21)

In the limit g1,4 → ∞ we can ignore the kinetic terms of the gauge fields, so the

equations of motion for the gauge fields arise only from (3.21). It is convenient to denote

the gauge fields corresponding to the broken generators4 by VI , where I = 1, . . . , 13, with

VI = Va for I = 1, . . . , 12 and V13 = U . We then write the equations of motion for VI as

0 = D̂I + λIJVJ + . . . → VI = −λ−1
IJ D̂J + . . . , (3.22)

where “+ . . . ” denotes higher order terms. In this equation, D̂J are the D-terms,

D̂a = (F †)i(T a) j
i Fj − F̄ i(T a) j

i F̄ †
j − 1

2
(A†)ij(T a) kl

ij Akl ,

D̂13 = qS S†S + qF (F †)iFi + qF̄ F̄ iF̄ †
i − 1

2
qA (A†)ijAij , (3.23)

and the vector mass matrix λIJ has the following components:

λ13,13 = q2
S S†S + q2

F (F †)iFi + q2
F̄ F̄ iF̄ †

i − 1

2
q2
A (A†)ijAij ,

λ13,a = qF (F †)i(T a) j
i Fj − qF̄ F̄ i (T a) j

i F̄ †
j − 1

2
qA (A†)ij(T a) kl

ij Akl ,

λab =
1

2
(F †)i{T a, T b} j

i Fj +
1

2
F̄i {T a, T b} j

i F̄ †
j − 1

4
(A†)ij{T a, T b} kl

ij Akl . (3.24)

By excluding the generators of the unbroken SU(2) subgroup, we are ensuring that λIJ is

invertible. Note also that because the D̂I are functions of Φ† and Φ, we will occasionally

write D̂I = D̂I(Φ†,Φ).

It is useful to consider the superfield equation (3.22) in component form. Reading

off the θ2θ̄2 component, we see that D ∼ |F|2/|φ|2, where F is shorthand for the F-term

components of the chiral field Φ and φ stands for the lowest component of Φ. This

makes it transparent that the non-vanishing D-terms are induced by the SUSY-breaking

F-terms. Additionally, we see that the θ = θ̄ = 0 component of the vector is nonzero.

This is why the physics of a massive vector superfield is clearer in unitary gauge than in

Wess-Zumino gauge.

Substituting into the Lagrangian gives the effective Kähler potential

Keff = K(0) − 1

2
D̂Iλ−1

IJ D̂J + . . . (3.25)

4The splitting of the 15 SU(4) generators into 12 broken and 3 unbroken generators is given explicitly

in appendix B.
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with canonical contribution K(0) = S†S + (F †)iFi + F̄ iF̄ †
i − 1

2 (A†)ijAij.

Including messengers Lα and L̄α, we now expand around the D-flat directions φ0. In

our notation, D̂I(φ†
0, φ0) = 0. Writing a general field as Φ = φ0 + δΦ, we impose the

unitary gauge condition5 φ†
0T

IδΦ = 0. Equivalently, we can write D̂I(φ†
0, δΦ) = 0. In this

gauge, the effective Kähler potential is

Keff = K(0)+L†αLα+L̄†
αL̄α− 1

2
δD̂Iλ−1

(0)IJ δD̂J−q (L†αLα−L̄†
αL̄α)λ−1

(0)13,J δD̂J +. . . (3.26)

with δD̂I ≡ D̂I(δΦ†, δΦ) and λ(0) is (3.24) evaluated at φ0.

We obtain the Kähler metric gAB̄ from Keff by differentiating with respect to the

fluctuations δΦ and Lα, L̄α. The masses of the messengers are then obtained from the

effective potential

Veff = gAB̄∂AW ∂B̄W̄ . (3.27)

The leading order terms in Keff are canonical, so it is trivial that the vacuum energy

Vmin agrees with the microscopic calculation. The SUSY-split messenger masses arise from

the final term in (3.26) via the nonzero D-term. Specifically, (3.27) gives diagonal masses

of the form

m2
d =

2b2−a2+a3b3
(
ab5+2c−ab3c2

)

4a4b4 (a2 + 2b2 + 4c2)
q =

4b2−2a2+a6b6+2a3b3
√

4b2−2a2

2a4b4(6b2 − a2)
q. (3.28)

Evaluating a and b at the minimum of the potential, we find that this agrees with

the previous calculations. It is clear from the form of the Kähler potential (3.26) that no

off-diagonal terms are generated.

3.4 Radiative corrections

Including one-loop corrections to the Kähler potential is straightforward. This will produce

off-diagonal masses and a nonzero supertrace over the messenger sector.

We can set g4 = 0 for the purpose of computing the leading order radiative corrections

to the messenger masses. The one-loop correction [23, 24] relevant for the messenger

masses is

K1−loop =
1

(4π)2
2 g2

1 tr M2 log(M2/Λ2
1) , M2 =

∑

i

q2
i |φi|2 , (3.29)

where the sum is over the U(1)-charged spectrum.6 For the 4-1 model with Nf pairs of

messenger fields we find

M2 = 16|S|2 + 9|F |2 + |F̄ |2 + 2|A|2 + q2(|Lα|2 + |L̄α|2) . (3.30)

The sum over α = 1, . . . , Nf is implicit.

5This condition would be trivially satisfied for the unbroken generators and thus would impose no

constraints on the fluctuations δΦ.
6Since SUSY is broken, there are corrections to this formula, but they are suppressed by h ≪ 1.
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Defining α1 ≡ g2
1/4π and expanding the Kähler potential to quadratic order in the

messenger fields, we find

K1−loop =K1−loop
0 +

α1

2π
q2
(
|Lα|2+|L̄α|2

)(
1+log

[
16|S|2+9|F |2+|F̄ |2+2|A|2

Λ2
1

])
. (3.31)

The first term, K1−loop
0 , is independent of the messenger fields and contains the one-loop

correction to K0 in (3.11). We are interested here in two quantities, the off-diagonal

messenger masses and the supertrace of the messenger sector. These two quantities are

both unaffected by K1−loop
0 , which we will therefore not concern ourselves with any further.

The second term of (3.31) corrects K1,2 of the Kähler potential (3.15). In terms of the

gauge-invariant operators, we can write

K1−loop
1,2 =

α1

2π
q2 Kcl

1,2

[
1 + log

(
2|Y |1/2

[
13 − 2f(T )2

]

f(T )Λ2
1

)]
, (3.32)

where we must take q = 4 for consistency with our analysis in section 3.1.

The off-diagonal messenger masses m2
odXαZα are now non-vanishing,

m2
od =

α1

π

(9Λ5 − 13h
√

T |Y |5/4)f(T )

|Y |(13 − 2f(T )2)
m q2 = 0.0128 q2 α1 h4/5 m Λ . (3.33)

The diagonal masses m2
d also receive contributions from the corrected Kähler potential.

This leads to a negative supertrace over the messenger sector. Specifically,

Str m2
msg = tr M2

0 − tr M2
1/2 = −0.374α1 q2 Nf h8/5Λ2 . (3.34)

4 Adding a Fayet-Illiopoulos term

We now consider the 4-1 model with an FI term ξ. Within the considered range of parame-

ters, the vacuum breaks SUSY for all values of ξ. In this section, we derive the SUSY-split

messenger masses.

4.1 Microscopic calculation with FI term

The addition of the FI term changes the U(1) D-flatness condition to be

2a2 − 4b2 + 4c2 + ξ = 0 . (4.1)

Scaling all fields as above (2.6) , the scalar potential V now depends on a new dimen-

sionless quantity ξ′ = ξ h2/5Λ−2. Assuming ǫ = h2/g2 ≪ 1, the minimum of V is located

near the D-flat directions. When ξ′ is large, we must also assume (see section 5)

ξ′

8
<

1

h8/5

m2

Λ2
≪ 1

ǫ

1

ξ′2/3
for large ξ′. (4.2)

in order for the messengers to have zero vevs. Note that a necessary condition is ǫ ≪ ξ′−5/3.
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Figure 1. (Left) Solutions of a, b and c at the minimum of the potential vs. ξ′ ≡ ξ Λ−2h5/2.

(Right) Vmin vs. ξ′.
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Figure 2. Diagonal messenger mass splittings µd(ξ
′).

To leading order we minimize the F-term potential on the D-flat directions. The

solutions for a, b and c at the minimum are displayed as functions of ξ′ in figure 1. The

value of Vmin (in units of h6/5Λ4) is a monotonically increasing function of ξ′; see figure 1.

The O(ǫ)-corrections to the potential are calculated as without the FI-term. As before,

the non-vanishing of the U(1) D-term at the corrected minimum of the potential introduces

SUSY-breaking mass splittings for the messengers: The diagonal mass terms are m2 ±
µd(ξ

′) |q|h8/5Λ2. The function µd(ξ
′) grows monotonically with ξ′, see figure 2. Consistency

requires that the messengers do not become tachyonic, so there is a bound on how large ξ

can be. We will return to this in section 5.2.

4.2 Unitary gauge

The calculation in unitary gauge proceeds as in section 3.3 and we will only highlight

the changes resulting from having ξ 6= 0. The Kähler terms (3.21) are modified by the

additional FI-term +ξU . The equations of motion for the gauge fields again take the

form (3.22) with the matrix λIJ unchanged, i.e. given by (3.24), and only the U(1) D-term

modified, D̂a
ξ = D̂a and D̂13

ξ = D̂13 + ξ. The unitary gauge condition for the fluctuations

δΦ around the D-flat vacuum φ0 now reads D̂I
ξ (φ

†
0, δΦ) = 0. When the messenger fields
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with vanishing vevs are included, the effective Kähler potential is

Keff = K(0) + L†αLα + L̄†
αL̄α − 1

2
δD̂I

ξλ
−1
(0)IJ δD̂J

ξ − q (L†αLα − L̄†
αL̄α)λ−1

(0)13,J δD̂J
ξ

+ξ q λ−1
(0)13,13 (L†αLα − L̄†

αL̄α) + . . . (4.3)

with δD̂I ≡ D̂I(δΦ†, δΦ). Compare this result with (3.26) to note the new ξ q contribution.

The result for the messenger mass splittings is

m2
d =

4b2 − 2a2 + 2a3b3
√

4b2 − 2a2 − ξ + a4b6
(
a2 + ξ/2

)

2a4b4 (6b2 − a2 − ξ)
q . (4.4)

which agrees numerically with the result found in the microscopic calculation.

4.3 Gauge-invariant operators

We now wish to reproduce (4.4) via gauge-invariant operators. To begin, we write the

Kähler potential compactly as

K = S†e4US + tr

{
F †e−3UeV AT A

F + F̄ e−Ue−V AT A

F̄ † +
1

2
A†e2Ue

V AT A

A

}
+ ξU

≡ KS + KF + KF̄ + KA + ξU . (4.5)

The FI-term ξU makes the Kähler potential (4.5) gauge-dependent. Instead of working

in Wess-Zumino gauge, as we did in section 3.2, we will here avoid an explicit gauge choice

and proceed by a different method7 to integrate out the gauge fields to obtain the Kähler

potential in terms of the gauge-invariant operators Y and B.

We need to express U and KS,F,F̄ ,A in terms of ξ, |B|2 = B†B and |Y |2 = Y †Y . The

SU(4) D-flatness conditions imply that F̄ ie−U F̄ †
j = F †ie−3UFj and (A†)ike2UAjk ∝ δi

j . The

former gives KF̄ = KF and the latter |Pf A|2 = 4(TrA†A)2. These relations are needed to

show that |Y |2 = K2
F K2

A and |B|2 = KSK2
F .

The U(1)-flatness condition, 4KS − 3KF − KF̄ + 2KA + ξ = 0, is simply the equation

of motion for the U(1) gauge field, ∂K/∂U = 0, in the limit where we neglect the gauge

kinetic terms. We use the above results to write the U(1)-flatness condition as a cubic

equation which determines KF in terms of |B|, |Y |, and ξ:

K3
F − ξ

4
K2

F − 1

2
|Y |KF − |B|2 = 0. (4.6)

Let us introduce T ≡ |B|2/|Y |3/2 and y ≡ ξ/(4|Y |1/2), and set f(T, y) ≡ |Y |1/2/KF .

Then (4.6) becomes

Tf3 +
1

2
f2 + yf − 1 = 0 . (4.7)

Note that for vanishing FI term, (4.7) reduces to equation (3.8) for f(T ) = f(T, y = 0)

(see section 3.1). When solving (4.7) , we must choose the real positive root.

To finish the calculation of the Kähler potential, we need to solve for U . Note that

log KS = 4U + log S + log S†. Using KS = |B|2/K2
F = f(T, y)2 |B|2/|Y | we have U =

7We are grateful to N. Seiberg for showing us this technique.
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1
2 log f(T, y) + hol. + anti-hol. This contributes to the Kähler potential only through the

term ξU , so the purely holomorphic and anti-holomorphic terms can be dropped. Thus we

have obtained the Kähler potential in terms of the gauge-invariant operators,

Kξ
0 = KS + KF + KF̄ + KA + ξU = |Y |1/2

(
3

f(T, y)
+

f(T, y)

2

)
+

1

2
ξ log f(T, y) . (4.8)

In the second equality, we have dropped a constant term |Y |1/2y = ξ/4. It is clear

that when ξ = 0, the Kähler potential (4.8) reduces to (3.6), (3.11) . A useful test of

the correctness of Kξ
0 is that it produces the correct minimum value of the scalar potential

V = gAB̄∂AW∂B̄W with the Kähler metric gAB̄ obtained from (4.8) and the superpotential

W = hB + 2Λ5 Y −1/2. Our result (4.8) has passed this qualifier exam.

4.3.1 And now with messengers

Adding the messenger fields with U(1) charges ±4 to the 4-1 model gives rise to the gauge-

invariant operators described in (3.13) and (3.14) . We include as before the superpotential

mass term Wm = mLαL̄α = m XαZα/(4Y ).

The Lagrangian contains kinetic terms for the messengers KL + KL̄, where KL =

L†αe4ULα and KL̄ = L̄†
αe−4U L̄α. KL and KL̄ satisfy

|Y |2KLKL̄ =
1

16
(X†αXα)(Z†

βZβ) , KLK2
F = X†αXα . (4.9)

It follows that

KL = K−2
F X†αXα , KL̄ =

K2
F

16|Y |2 Z†
βZβ. (4.10)

These results hold to leading order in the neighborhood of the D-flat directions of the

pure 4-1 model. In this neighborhood, the Kähler potential is

Kξ = Kξ
0 + K−2

F X†αXα +
K2

F

16|Y |2 Z†
βZβ + . . . (4.11)

where “. . . ” denotes higher order terms in X and Z. Here Kξ
0 is given in (4.8) and

KF = f(T, y)−1|Y |1/2.

The Kähler metric gAB̄ is a (2 + Nf )× (2 + Nf ) matrix. From its inverse we compute

the scalar potential, and in particular the mass terms of the messenger fields. The result

confirms the two other calculations.

4.4 Radiative corrections

It is straightforward to calculate of the one-loop correction to the Kähler potential when

ξ 6= 0. The second term of (3.31) corrects K1,2 of the Kähler potential. In terms of the

gauge-invariant operators we can write it

K1−loop
1,2 =

α1

2π
q2 Kcl

1,2

[
1 + log

(
2|Y |1/2

[
13 − 2f(T, y)2 − 8yf(T, y)

]

f(T, y)Λ2
1

)]
, (4.12)

with q = 4. The off-diagonal masses m2
od and the supertrace Str m2

msg of the messenger

sector can then be calculated; the results depend on ξ through y = ξ/(4|Y |1/2).
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Figure 3. (Left) Supertrace of the messenger sector smsg ≡ (−Str m2
msg)/(α1q

2Nfh8/5Λ2) vs. ξ′.

(Right) Off-diagonal messenger masses µod ≡ m2
od/(q2α1h

4/5mΛ) vs. ξ′.

We display the behavior of m2
od and Strm2

msg in figure 3. The supertrace is negative

for all values of ξ′ = ξ Λ−2h2/5; it approaches zero as ξ′ → 0 and decreases monotonically

as ξ′ → ∞. The off-diagonal masses have a more interesting behavior. As is clear from

figure 3, m2
od = µod q2α1h

4/5mΛ can be positive or negative and µod is bounded, taking

only values −0.0197 . µod . 0.0273. Note that m2
od vanishes when ξ′ ≈ −2.31, and also

when |ξ′| → ∞. We comment on the possible phenomenological consequences in section 6.

5 Away from U(1) flatness

In our analysis so far we have assumed that h ≪ g1,4 ≪ 1. This hierarchy forces the

minimum of the scalar potential to be close to the D-flat directions. One might ask what

happens if the condition h ≪ g1 is relaxed so that the minimum of the potential moves

away from the U(1) flat directions. Another assumption we made was that the mass m of

the messenger fields was large enough that the potential was minimized when the vevs of

the messengers vanished. We have not yet made it clear what “large enough” means. In

this section, we explore these two issues.

5.1 How big is big? (without being too big)

Let us for simplicity study the 4-1 model and a single pair of messenger fields with U(1)

charges ±1. We do not include an FI term here. As in section 2, we rescale all fields

φ → Λh−1/5φ̃. The potential can then be written as

V = h6/5 Λ4

(
VF + m̃2

(
|L̃+|2 + |L̃−|2

)
+

1

ǫ1
V

U(1)
D +

1

ǫ4
V

SU(4)
D

)
, (5.1)

where VF is the F-term potential of the pure 4-1 model and we have introduced dimen-

sionless parameters

m̃2 =
m2

Λ2 h8/5
, ǫ1,4 =

h2

g2
1,4

. (5.2)

The U(1) D-term potential includes the messengers and is

V
U(1)
D =

1

8

(
d + |L̃+|2 − |L̃−|2

)2
. (5.3)
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where d = 4|S̃|2 − 3|F̃ |2 − | ˜̄F |2 + 2|Ã|2 is the U(1) D-term of the pure 4-1 model.

We will consider the limit ǫ4 → 0 in which the minimum of the potential is located on

the SU(4) D-flat directions. Our job is then to minimize the potential

V = h6/5 Λ4

[
VF + m̃2

(
|L̃+|2 + |L̃−|2

)
+

1

8ǫ1

(
d + |L̃+|2 − |L̃−|2

)2
]

(5.4)

on the SU(4) D-flat directions, where d = 2a2 − 4b2 + 4c2 and VF is given in (2.8).

If we take the limit ǫ1 → 0, we must impose the U(1) D-flatness condition V
U(1)
D = 0,

and the messenger mass term forces the minimum of V to be at 〈L̃±〉 = 0. This in turn

enforces the D-flatness condition of the pure 4-1 model, namely d = 0. The minimization

of the remaining potential VF was the calculation of section 2.

Let us now consider finite ǫ1 > 0. From the point of view of the messenger fields,

the minimization problem is simply SQED with gauge coupling g̃2
1 = 1/ǫ1 and a Fayet-

Iliopoulos term d. The role of the FI term is played by the “distance” d away from the U(1)

flat directions. Extremizing (5.4), we see that the minimum is located at 〈L̃±〉 = 0 when

|d| < 4m̃2ǫ1, and away from the origin otherwise. To avoid 〈L̃±〉 6= 0, we must assume that

m satisfies m2 & g2
1 h−2/5Λ2 |d|/4. This is what we mean by m2 being “large enough”.

However, we do not want to have m2 too big, since we want to be able to integrate out

the Higgsed vector fields while keeping the messengers in the resulting effective low-energy

theory. The masses of the Higgsed vectors are of order m2
V1,4

∼ g2
1,4v

2 with v ∼ h−1/5Λ.

Noting that the lower bound on m2 found in the previous paragraph can be written m2
V1

d/4,

we can express the resulting conditions on m2 as the inequality

m2
V1

d/4 . m2 ≪ m2
V1,4

. (5.5)

Clearly this can only be satisfied if d/4 ≪ 1.

The SUSY-split messenger masses m2 ± m2
d come from the cross-terms in the D-term

potential: from (5.4) we find m2
d = d/(4ǫ1)Λ2h8/5 ∼ (d/4)m2

V1
. Thus the condition that

sends the messengers to the origin, m2
V1

d/4 . m2, also ensures that the messenger masses

do not become tachyonic.

Let us end this subsection with an example. Setting 〈L̃±〉 = 0, it is easy to minimize

the potential (5.4) for general values of ǫ1 and compute the corresponding value of d at the

minimum. If, in particular, we assume that ǫ1 is small and expand to linear order, then

the minimum is located at

(a, b, c) = (1.492 + 0.106 ǫ1, 1.102 − 0.0708 ǫ1, 0.3182 + 0.0554 ǫ1) . (5.6)

These values give d = 1.396 ǫ1 and Vmin = (2.22 − 0.244ǫ1)h
6/5 Λ4. The SUSY split

masses are m2
d = d/(4ǫ1)Λ2h8/5 = 0.349Λ2h8/5. These results agree with what we found

in section 3, see eqs. (2.13) and (3.4) . The result that d ∼ O(ǫ1) justifies setting 〈L̃±〉 = 0

provided that m2 satisfies (5.5).

5.2 Bound on the FI-term

Let us now consider the same setup as in the previous subsection, but with non-vanishing ξ.

We will again consider the limit ǫ4 → 0 so that we minimize the potential (5.4) on the SU(4)
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D-flat directions. Now, however, the U(1) D-term potential involves d = 2a2−4b2 +4c2 +ξ′

with ξ′ the rescaled FI-term, ξ′ = ξΛ−2h2/5. When ξ′ is small, it only acts as a perturbation

on our earlier analysis. The more interesting case is what happens when ξ′ ≫ 1, since this

is when the SUSY-breaking mass splittings m2
d become large.

We carry out the calculation as in the previous section, by setting 〈L̃±〉 = 0 and

expanding in ǫ1 ≪ 1. When ξ′ becomes large we find to leading order that the minimum

of the potential is located at a ∼ ξ′−1/3, b ∼ ξ′1/2/2, and c ∼ ξ′−7/6, so that d ∼ 0. The

leading order correction in ǫ1 ≪ 1 gives d = ǫ1ξ
′/2 at the O(ǫ1)-corrected minimum of the

potential. This in turn implies m2
d = ξ′/8.

As before, setting 〈L̃±〉 = 0 is justified provided that |d| < 4m̃2ǫ1. Again we must

make sure that this does not force m2 to be larger than the masses of the Higgsed vectors.

An analysis shows that for large ξ′, there are 8 heavy vectors with masses O(ξ′) and 5

lighter vectors with masses O(ξ′−2/3). The latter obviously place the stricter bounds on

m2. Restoring the scales, the conditions m2
d < m2 ≪ m2

V can be written Λ2h8/5ξ′/8 <

m2 ≪ g2Λ2h−2/5ξ′−2/3 or

ξ′

8
<

1

h8/5

m2

Λ2
≪ 1

ǫ

1

ξ′2/3
for large ξ′. (5.7)

Here ǫ = h2/g2, where g2 denotes quadratic combinations of g1 and g4. A necessary

condition is ǫ ≪ ξ′−5/3. Thus if ξ′ is very large, the minimum of the potential is forced

to be very close to the D-flat directions. In addition to this we require that m2/Λ2 and h

fulfill the bound (5.7).

5.3 Alternative model

The Semi-Direct Gauge Mediation models studied here and in [15] have an explicit dimen-

sionful parameter m which is not dynamically generated. This feature might be considered

unattractive. The analyses of the previous two subsections clearly show that the super-

potential mass term m L+L− for the messenger fields is needed in order to stabilize the

vacuum at the origin 〈L±〉 = 0. What we explore in this subsection is whether an inter-

action between the 4-1 model and messenger sector can replace the mass term and thus

satisfy the purist’s dream of a model with only dynamically generated masses.

We noted in section 6.1 that from the point of view of the messenger sector, the

minimization of the potential is exactly that of the Fayet-Iliopolous model with the role

of the FI-term played by d, the 4-1 model U(1) D-term. When |d| > 4m̃2ǫ1, the origin

〈L±〉 = 0 remains a local extremum: it is stabilized in one direction, but becomes tachyonic

in the other. In particular, if d > 4m̃2ǫ1 > 0, then L− is tachyonic at the origin while L+

remains stabilized. What we seek is an interaction that stabilizes L− in the limit m → 0.

Let us for simplicity first consider a single pair of messenger fields L±. Then there is a

simple construction that does the job. Set q = 2 and take the R-charges of L± to be 4 and

−2. Then S(L−)2 is gauge-invariant with R-charge 2. The gauge local U(1) and global

U(1)R remain anomaly free. The superpotential

W = hSF̄F + 2
Λ5

√
Y

+ t S(L−)2 (5.8)
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preserves the R-symmetry.

Consider now the scalar potential with an F-term potential from (5.8) and the U(1)

D-term potential. When ǫ1 is non-vanishing, the L+ fields are stabilized at the origin.

Moreover, when |t| is sufficiently large, L− is also stabilized at the origin. With 〈L±〉 = 0

we can then minimize the 4-1 fields. Expanding around the extremum we find in numerical

examples that there are no negative eigenvalues of the boson mass matrix, and this verifies

that it is indeed a local minimum.

Introducing the extra term in the superpotential allows a runaway direction where

SUSY is restored. This is typical for Minimal Gauge Mediation (MGM) models. There are

many possible such runaway directions, even for fixed values of h and t, so it is not clear

if the lifetime of the metastable vacuum at 〈L±〉 = 0 can be made sufficiently long-lived.

To convert our simple toy model to a more realistic MGM model requires introducing

more messenger fields to get a large enough flavor symmetry group. One way to obtain an

SU(5) global symmetry group for the messengers is to arrange them into adjoints of the

SU(5); call them L+ and L− as before. Then the interaction S tr L2
− in the superpotential

preserves the global SU(5). The minimization problem involves 24 pairs of messengers and

can be carried out as before. We find numerically that the potential has a meta-stable

vacuum at 〈L±〉 = 0.

If we re-introduce the messenger mass term m in the superpotential, we have an MGM

model which interpolates between the following extreme limits: (a) At m = 0, the model

has a metastable vacuum; (b) As we take m → ∞ the messengers decouple and SUSY is

restored in the SSM; (c) At t = 0, we recover our 4-1 model of Semi-Direct Gauge Mediation.

6 Phenomenology

Here we comment briefly on the phenomenology of the Semi-Direct Gauge Mediation model

with the 4-1 hidden sector. We leave a more thorough investigation for future work.

Having a U(1) gauge group in the hidden sector has a few advantages. For one,

the hierarchy g1 ≪ g4 is automatic, since a gauged U(1) is always IR free. This stands in

contrast to the model of [15], where it was necessary to have Nf sufficiently large to achieve

the appropriate hierarchy of scales. Since we wish to embed the SSM inside the SU(Nf )

flavor symmetry, we must take Nf ≥ 5. Another advantage of the U(1) gauge group is that

it does not lead to problems with Landau poles in the Standard Model; this is a problem

that has plagued Direct Mediation models in the past.

Just as in the 3-2 model, the 4-1 model is automatically CP invariant and the R-

symmetry is broken. To leading order in F/mW , gaugino masses vanish, just as in [15].

This is in accord with the results in [25]. There can be several contributions to sfermion

masses, starting at the two-loop order [26]. As in [15], our model has a negative supertrace

over the messenger sector. This will give a positive contribution to the sfermion masses [9].

Additionally, the sfermion masses will get contributions from the tree-level diagonal SUSY-

split masses and the off-diagonal masses. A more thorough analysis is needed to determine

the overall sign of the sfermion masses.
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Adding an FI term makes all the calculated quantities depend on ξ′ = ξ h2/5/Λ2. Gaug-

ino masses still vanish to leading order. The supertrace over the messenger sector remains

negative, and decreases monotonically with increasing ξ′. Interestingly, the off-diagonal

masses coming from the one-loop corrections can now be either positive or negative, and

more importantly they are bounded both from above and below. Within the regime of

validity of our calculations, it seems that one would be able to tune the supertrace to be

large (and negative) while making the off-diagonal masses small. This may help make the

sfermion masses positive, but a more detailed analysis is needed in order to see this.

In order for our model to be phenomenologically viable, we would eventually need to

couple the model to gravity. One practical reason is that we need gravitational effects to

lift massless states, such as the R-axion [27] and the Goldstino. Note, however, that it

has recently been argued [28] that it is not possible to consistently couple a SUSY theory

with a (much smaller than Planck scale) FI term to supergravity. However, one of the

observations we made in section 5 was that the vanishing of the (vev of the) D-term of

other fields can sometimes play the role of an “effective FI-term”. It would be interesting

to exploit this in model building.
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A D-flat directions

We provide here the basic ingredients needed to construct the D-flatness conditions and

solve them.

A.1 Group theory

Solving for the D-flat directions in this model is made more interesting by the inclusion of

the antisymmetric tensor Aij . The generators of the two-index antisymmetric representa-

tion of SU(N) are (
T a
) ij

kl
= 2 (T a)

[i
[k δ

j]
l] , (A.1)

where T a is a generator of the fundamental of SU(N). The overall normalization is fixed by

requiring that the generators satisfy the algebra. With the normalization Tr T aT b = δab,

the generators of the antisymmetric representation satisfy Tr T aT b = (N − 2)δab.

A.2 D-terms

The D-term potential VD of the 4-1 model is given in eq. (2.6) . We present here the

explicit expression for the D-terms. They are

DU(1) =

(
qS S†S + qF F †F + qF̄ F̄ †F̄ − 1

2
qA (A†)ijAij

)
, (A.2)
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Da
SU(4) =

(
(F †)i(T a) j

i Fj − F̄ i(T a) j
i (F̄ †)j −

1

2
(A†)ij(T a) kl

ij Akl

)
. (A.3)

The factor −1/2 for the antisymmetric field is the correct normalization of the Kähler term,

−1
2(A†)ij(eV ) kl

ij Akl.

Let us write out the SU(4)-term for the anti-symmetric field Aij explicitly. We have

(A†)ij
(
T a
) kl

ij
Akl = 2(A†)ij (T a)

[k
[i δ

l]
j]Akl = 2(A†)ik(T a) j

i Ajk. (A.4)

Thus, the total SU(4) D-term is

Da
SU(4) = (T a) j

i

[
F †iFj − F̄ iF̄ †

j − (A†)ikAjk

]
, (A.5)

which implies that the SU(4) D-flatness condition is

F †iFj − F̄ iF̄ †
j + (A†A) i

j = c0 δ i
j (A.6)

for some complex number c0.

A.3 Solving the SU(4) D-flatness conditions

Using SU(4) gauge symmetry, the vevs of the anti-symmetric 4 ×4 matrix A can be brought

to the block diagonal form diag(a i σ2, a
′ i σ2). Generically, a 6= a′, and this then leaves an

unbroken SU(2) × SU(2) subgroup which we can use to rotate the vevs of F to the form

F T = (f1, 0, f3, 0). Let F̄ = (e1, e2, e3, e4). The D-flatness condition (A.6) imposes the

constraints e2 = e4 = 0, |f1| = |e1|, |f3| = |e3| and |a′| = |a|.
The group element U = diag(eiφ, 1, 1, e−iφ) of SU(4) can be used to rotate the phases

of a and a′ so that a = a′. With A = diag(a i σ2, a i σ2) there is a larger subgroup of SU(4)

which leaves A invariant, namely Sp(4). An element of this group can now be used to rotate

F to the form F T = (b, 0, 0, 0) with b real and non-negative. The D-term condition (A.6)

then implies that e3 = 0, so that F̄ = (b eiφb , 0, 0, 0).

In addition to the local U(1), the theory has a global U(1) symmetry as well as a global

U(1)R. Using these three U(1)’s, we can set φb = 0 and also make a real and non-negative,

without introducing new phases in F . Thus, without loss of generality, we can parameterize

the SU(4) D-flat directions by

A =
a√
2

(
i σ2 0

0 i σ2

)
, F = F̄ T =




b

0

0

0


 , S = c eiφc , (A.7)

with real positive numbers a, b, c > 0. The 1/
√

2 is included in A for later convenience.

Eq. (A.7) is the result quoted in the main text, see (2.2) .

Note that when messenger fields are added with U(1) gauge charges ±q, there is an

additional (anomaly-free) global U(1) symmetry under which the 4-1 fields are neutral but

the messengers have charges ±q′. If we allow the messengers to acquire vevs, v±eiφ± (with

v± ≥ 0), then the new global U(1) can be used to set φ− = 0. This does not interfere with

the result (A.7).
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B SU(4) generators

The 15 generators of SU(4), T a = 1√
2
ta, are constructed in analogy with the Gell-Mann

matrices. We use the following basis:

t1 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


, t2 =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


, t3 =




1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


, t4 =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


,

t5 =




0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


, t6 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


, t7 =




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


, t8 =

1√
3




1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


,

t9 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


, t10 =




0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0


, t11 =




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


, t12 =




0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0


,

t13 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


, t14 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


, t15 =

1√
6




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


. (B.1)

The generators are normalized such that tr T aT b = δab. The Cartan generators are

T 3, T 8 and T 15.

On the SU(4) D-flat directions, F , F̄ and A have vevs (A.7) which (when a, b are

both non-vanishing) break all generators except T 13, T 14, and 1√
3
(T 8 −

√
2 T 15). Thus the

SU(4) is broken to the SU(2) subgroup generated by the 3 unbroken generators.

In our analysis in section 3.2 we have to remove the 3 unbroken generators when

integrating out the Higgsed vector multiplets. The 12 remaining broken generators of

SU(4) are T̃ a, a = 1, . . . , 12, where T̃ a = T a when a 6= 8 and T̃ 8 = 1√
3
(
√

2 T 8 + T 15). The

U(1) gauge group is also broken.
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